
PHP 6 & The PHP Collaboration Project
Present & Future

Zeev Suraski
Co-founder & CTO, Zend Technologies
Co-architect of PHP

2

• Unicode support
• Polish up OO including __toString() support everywhere
• Improved SOAP support? (WS-Security, file attachments)
• Remove legacy junk such as register_globals & safe_mode
• The future will tell…

PHP 6 Key Improvements

3

• A definition for i18n:
§ The effort to make the Web usable to everyone regardless of

their preferred language or geographic location through the
effort of making all technologies operable across all languages
and writing systems.

• PHP will support Unicode standard
§ & Zend leading effort

• Use the IBM ICU library:
§ provides an open, flexible, portable foundation for

applications to use for their software globalization requirements.
• Bulk of core work already completed

Internationalization

4

Unicode String Literals

• With unicode_semantics=on, string literals are of
Unicode type

• 1 character may be > 1 byte

• To obtain length in bytes one would use a
separate function

// unicode_semantics = on
$str = "hello world"; // Unicode
echo strlen($str); // result is 11

$jp = "検索オプション"; // Unicode
echo strlen($str); // result is 7

5

PHP Collaboration Project

SOA,
Web Services,

etc.

SOA,
Web Services,

etc.

Open
Source
Open

Source

CommunityCommunity

PHP
Language

PHP
Language

Open
IDE

Open
IDE

Best
Practices

Best
Practices

PHP
Framework

PHP
Framework

6

What do we need?

• SOA & Web Services:
§ Finally software re-use truly seems to work. And not in its

previous copy-on-write incarnation.
§ Software re-use works across companies.
§ Increasingly important to support all (popular) forms of

Web Services

• Data is (still) King:
§ Need to support all data (relational, XML, legacy)
§ Data needs to be searchable

7

What do we need?

• Rich Interfaces:
§ The world has acknowledged the deployment

advantages of the browser.
§ Ajax is a response to the need for a richer and easily

deployable interface in the browser.

• Continue the low barrier to entry:
§ Continue building on PHP’s simplicity which has made it

a success.
§ Open-source’s distribution advantages enables

companies to start playing and building on top of
technology without a relationship with vendors.

8

What do we need?

• Need for Best Practices:
§ It is not trivial to architect, build and deploy stable,

secure and high-performing three tier Web apps
(Javascriptà PHP à DB)

• RAD:
§ Time-to-market on the Web is becoming increasingly

critical.

9

The Importance of Simplicity

• Simpler is easier to use.
• Simpler is more stable, and less prone to error.
• Simpler is more compatible.
• Simpler is easier to maintain.

"Things should be made as simple as
possible, but no simpler.“

-- Albert Einstein

Plagiarized from http://www.pantos.org/atw/35504.html

10

Guiding Principles

• Keep it “extremely simple” – stick to 20%/80% rule and
compensate by:
§ Extensibility
§ Use-at-will architecture
§ Configuration-less

• Cherry pick best-of-breed ideas
• Showcase current trends in Web development (Web

Services, Ajax, Search, Syndication, …)
• Document development with use-cases
• Only high quality and necessary components
• Play nicely with others

11

How does the PHP Collaboration
Project fit in?

• SOA & Web Services:
§ Zend Framework has a large focus on Web Services

• Zend_Feed, Zend_Service_*
§ Eclipse (Web Tools Project):

• WSDL/XSD graphical editors
• UDDI/WSDL Explorer
• PHP code completion for WSDL

12

How does the PHP Collaboration
Project fit in?

• Data is (still) King:
§ Zend Framework:

• Zend_Db, Zend_Search_Lucene
• Support for XML databases

§ Eclipse (DTP Project):
• SQL Editing
• SQL Visual Query building
• SQL Debugging

13

How does the PHP Collaboration
Project fit in?

• Rich Interfaces
§ Zend Framework:

• Ajax and event model
• Json, Widgets

§ Eclipse (ATF – Ajax Toolkit Framework)
• Javascript editor
• Javascript debugger
• DOM inspector
• Toolkit specific functionality (Rico, Zimbra, Dojo)

• Best Practices
§ Zend Developer Zone (devzone.zend.com)
§ Zend Framework

Where are we heading?

15

RAD

• Component architecture
§ Both visual and non-visual components

• Rich-design time experience ala Delphi and
Visual Basic
§ Drag&drop of components onto the Web page

• Component is self-contained incl. design and
run-time rendering & property editors
§ IDEs don’t have to be hard coded per-component

• WYSIAWYG
• Programmatic model

16

Key issues

• Differentiating between run-time and design-
time rendering

• Isolation of HTML & component generated HTML
• Client & server side event model
• Property editing
§ HTML?

• Themes
§ Standard CSS as a recommendation to component

authors

How does it all work?

18

Friendly Licenses

• Zend Framework – PHP-like license
• PHP IDE – Eclipse license

Using these licenses bares great advantages:
• Allows commercial use free of charge, no strings

attached
• Attracts developers
• Licenses are well respected and widely proven

19

Building the Community

• Industry-wide collaborative effort led by Zend
including ISVs, integrators, experts both from
small and large companies including:
§ 100days.de
§ IBM
§ Ning.com
§ php|architect
§ Omni TI
§ Security experts (Chris Shiflett)
§ JamboWorks
§ and others…

20

Development Process
(Framework)

• Components designed by small teams

• Proposals written and reviewed before coding

• All code starts from scratch

• Real Life Tests

21

Quality Assurance

• Strict adherence to Zend Coding Standards

• All classes fully unit tested with PHPUnit2

• Peer-review and approval of all code

More Examples

23

ZActiveRecord

Declare a class that extends ZActiveRecord for each database table.
Create a new instance of the class to make a new row.

The fields in the table become
properties of the object automatically.

INSERT new records or UPDATE
existing ones by calling save().

24

ZActiveRecord

For simple queries, supply the search parameters to one of the find()
methods without needing to write SELECT statements in SQL.

For more complicated queries, KISS. No large OO-based query builder is
provided. Just write the SQL and use findBySql(). Optionally, the ZDbAdapters
include a simple tool for building SELECT statements to pass to findBySql().

25

ZMail

Once the transport has been configured (defaults to SMTP), simply build the
email and send() it.

In the example above, ZMail automatically builds the multipart email and
passes it to the transport, which sends it over a persistent SMTP connection.

26

ZSearch

Both a simple query API and an advanced OO-style query builder are provided.
For searching simple words and phrases, use the find() method.

Each hit returns a document object. Documents are divided into fields that
are chosen at the time of indexing. The documents in the index do not all need
to be the same format – they may have any mix of fields.

27

ZSearch

Complex query strings may be passed to ZSearch::find(). ZSearch includes a
tokenizer and a parser to allows for Google-like query strings to be added
to any website.

The example above searches all documents of all fields for “zend” and “php”
but not “java”.

Individual fields may also be specified: “-fieldName:content”.

28

• Zend Framework -
§ http://framework.zend.com

• PHP IDE project at Eclipse.org -
§ http://www.eclipse.org/php/ (TBD)

• Zend Developer Zone -
§ http://devzone.zend.com

Resources

Grazie!

